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SUMMARY

A method is described for the solution of the nonlinear equations
for supersonic conical flow. The procedure is mostly a numerical one-
based on the method of characteristics and the relaxation process. A
procedure for calculating the position of the shock is inherent in the
analysis. The method is applicable to any conical flow.

Ag an illustration, the flow about a triangular wing with super-
sonic edges is presented.

INTRODUCTION

A knowledge of the characteristics of bodies in supersonic flight
is dependent on both theoretical and experimental information. Most
theoretical aerodynamic data are obtalned by the use of linearized
theory which permits only very slender bodies and small angles of
attack. In determining the value of such information and the practical
range over which the parameters such as body diameter, wing thickness,
and angle of attack may be allowed to vary, one must rely on comparison
of these results with either experiment or a nonlinear theory. Because
of the limited experimental facilities available and the expense
involved in their operation and in model construction, the existence of
a practical nonlinear theory becomes important. Further, if more accu-
rate results are desired than may be obtained from a linear theory, a
nonlinear one is required.

In the case of conical flows, the solutions which have been obtained
up to the present time have been found mostly by the use of linearized
theory. Busemann (reference 1) introduced this procedure. References 2
and 3, to mention only two investigations, present extensive studies of
thin conical wings. Browne, Friedman, and Hodes (reference %) have
solved a special wing-body problem. In reference 5, a fairly general
method of solution is given for fuselage-type conical bodies. Linear-
ized solutions, satisfying the exact boundary conditions, have been dis-
cugsed by Laporte and Bartels (reference 6). Moore (reference T) and
Broderick (reference 8) have obtained second-order linearized solutions
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for several conical flows. More general analyses applicable to conical
problems include, for example, Evvard's work given in reference 9 (this
is applicable in the lifting case only when there is a supersonic
leading edge) and Spreiter's solutions (reference 10) for very slender
bodies and low-aspect-ratio wings. .

The application of nonlinear theory to conical flows has been lim-
ited mostly to Taylor and Maccoll's solutions for the right circular
cone at zero angle of attack (references 11 and 12). Solutions for the
yawed circular cone are given in references 13 to 15. Busemann (refer-
ence 16) and Ferrari (reference 17) have presented a general discussion
of the nonlinear problem. Ferri (reference 18) has given some general
analysis of the problem with particular reference to the yawed cone.
However, until the present, no attempt has been made to present a
detailed method for the solution of the general conical-flow problem.
The solution presented herein is of necessity mostly a numericeal one
using the methods of characteristics and relaxation. In the latter
case, reference to work by Southwell and Emmons (see, e.g., refer-
erences 19 and 20) has been found valueble. A discussion, by Lighthill,
of the shape of the shock about a conical obstacle (reference 21) also
proved usgeful,

This investigation was conducted at Brown University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

The author wishes to express his appreciation to Dr. W. D. Hayes
for many valuable suggestions recelved in the course of discussions with
him and to Dr. G. F¥. Carrier who read the manuscript critically and
carefully.

SYMBOLS

A rotation, defined £y equation (10)

c velocity of sound divided by maximuim velocity

c! velocity of sound

Cp pressure coefficient, difference between local and free-
stream static pressures divided by free-stream dynamic
pressure

Jd . mechanical equivalent of heat

X function of velocity and its derivatives, defined by

equation (L4O)
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R, 6, 9

S = JS'/7yR
Sl

Sy1

Syo

u, v, w

Mach number of free stream

component of free-stream Mach number taken normal to wing
leading edge

component of free-stream Mach number taken behind and
normal to shock

function of shock position, slope, and free-stream Mach
number, defined by equation (33b) .

spherical coordinates

gasg congtant

entropy
speed normal to wing leading edge
speed. behind and normal to shock

speed tangent to wing leading edge

velocity component lying on surface of sphere through

conical vertex (\/v2 + w2)

ratio of velocity components in'r-, 6-, and @-directions,
respectively, to maximum velocity

retio of free-stream velocity to maximum velocity

ratio of Cartesian velocity components to speed of sound

velocity vector
V' divided by maximum velocity

maximum velocity

ratio of velocities in 6- end @-directions (-v/w)
streamlines -

adisbatic exponent
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5 - arc-tangent of slope of shock .on surface r = Constant

€ . slope of body-tangent plane, defined in figure k4

1 angle defined in figure 4 and equations (2k)

6g equation of body

B shock anglé, measured in plane lying normal to leading
edge of surface to which shock is attached

’ angle defined in figure 4 and equations (24)

v angle defined in figure 4 and eguations (24)

Subscripts:

6, 9 differentiation with respect to 6 and ¢, respectively

ANATYSIS

The equations of motion of a perfect isocenergetic fluid may be
written according to reference 22 as

(v x T) x ¥ = (c')’ﬂ‘v(g—gl) (1)
and
v - [(wmxz N e VEJ =0 (2)
where
()% = Lz (ipe” - 7 - T) (3)

and where V! is the velocity vector; S', the entropy; J, the mechan-
ical equivalent of heat; 7, the adlabatic exponent; R, the gas con-

stant; Wp,, the maximum speed obtainable on expansion into a vacuum

(also constant); and - c', the velocity of sound. A change of variables
may now be made to nondimensionalize the quantities. Let
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5
S = Js*/yR
VT iy (1)
¢ = c'f¥may

)

Using these new variables, equations (1) and (2) were expanded in spher-
ical coordinates r, 6, and ¢ (fig. 1). This was done for canical
flow (so that neither the velocity nor entropy are functions of T).
Noting that u, v, and w are the components of V in the r-, 6-,
and @-directions, respectively, one obtains

w(gil;tpe - w) + v(ue - v) =0 (52)
u(v - ue) - w(we - sizq)e +w cot 6) = czs9 (5b)
v(we - Sivncpe + W cot 6) - u(si:q?e‘— ) = s_:.;S% (5c)

and, using equation (5a),

gin 9

2
c Eusin9+(vsig9)e+wq-;|=

a2 5 42) 302 4 )y v 52l ), ©

2 gin 6

Equations (5) yield

VS + X _ g (7)

sin 6

This says simply that the entropy is constant on the intersection
of a stream surface with a sphere through the vertex of the conical
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flow. Henceforth, such an intersection will be termed, for convenience,
a streamline. Denote by B = B(8) the eguation of such a streamline.
Its equation, in terms of the velocity components, is

“Bo

sin o 0 (8)

Vﬁe +

Thus the entropy is a function of B only and will hence be determined
solely by conditions at the juncture between the disturbed and
undisturbed flow.

Solving equations (5a) and (8) for v and w as functions of B
and u, one obtains -

y:ua—A
(9)
w = Yo - A
sin 6
where
Y
a = -I:—-L—
W 5991119
and ) ? (10)
A=u9+aucp/sin6
l+a2

The A 1is essentially the rotation. len, using these relations, the
two remaining ones (equations (5b) .and (6)) become

| (oA sin 0)
uA+(ucp-aA)siiq)9' e R (1)
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and.
2 2 2 2
Ug Up Yo Yoo Yo
ul2 - - + Uggll - + 1l - +
c2 c2 sin29 02 sj_n29 c2 sin29

ug cot 6(1 + 2%2 ) 2u9ucpu(pe

8ino 2 gin2

1 EA sin 6), + (ch)q;J +

sin O
-2ugugg + sizji GKBi:lq)O + ‘me)(ucp cot 0 - 2‘1@6) - uq)uea;' -
sin3e Eq’(aq’uq’ * aauwﬂ
A |
c2 v
AEu(l + a2) + ugg + (sin 5+ onue)on6 + siz 9(2uq)9 - cot Gil +
siﬁze (E‘acpucp * auw) B aAe(a.e ¥ saiz(pe) ) (12)

Equation (12) can be written in this alternative forms:

E NOET NG EE A)e[l (o0 - A)J

(51119 [ Line- ) +(u9-A)cot9E+ Si:lcpe;aA)ﬂ-

gin 8

N E R

gin 2] sin ©
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It is noted that, if the flow is irrotational, then SB = 0,

A = 0, and equation (11) is identically satisfied, and the right-hand
side of equation (12) is also O. In such a case, one need merely find u
satisfying the left-hand side of equation (12) set equal to O and, of
course, obeyling the boundary conditions. It is worth noting that - u

may, in this case, be thought of as a velocity potential (actually, the
velocity potential would be ru(6,9)).

To solve a conical-flow problem equations (11) and (12) or (13)
need to be solved, subject to the appropriate boundary conditions. There
are two main difficulties which will arise. One comes from the boundary
conditions from a shock surface, the location of which is initially
unknown. The other difficulty is caused by the fact that, in general,
the differential equations form a set which in every case has elliptic
regions and in many cases will also have hyperbolic ones. The condition
for the system to be elliptic is that

c2> v2 4+ w2 (1k)

One may note that in the case of small disturbances, such as linearized
flow, this condition corresponds to whether the point in question is
inside or outside the free-stream Mach cone extending downstream from
the vertex. In configurations such as a body of revolution at angle of
attack, the domain inside the shock will be entirely elliptic, while in
the case, for example, of a wing with supersonic leading edges, as will
be discussed in more detail later, there will be both elliptic and
hyperbolic regions. Any part of a hyperbolic region which is completely
independent of the elliptic region may be conveniently calculated. by the
method of characteristics, while any other region, either elliptic or
hyperbolic, will be found in this report by a relaxation process.

To set up the method of characteristics for the systems, it is
noted that there are two second-order quasi-linear partial differential
equations, equations (11) and (13), for B . and . u, where their second

- au
- .. 6
- derivatives appear only as thé first derivatives of a, (226 __ 7
. ’ . 1+ a?
Note that these two quantities are
a=-v/w - -0
” e"aue
pogme_ 0\ L (15)

Vl + a2
NP
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Then equations (11) and (13) may be rewritten as

v el + i2%5) + s + 52) -

sin 6

2
- MGA + c:2SBB6 + 325 cot 6)

W c

a 2 1 +42/\%  asinoe

LS 2 2
L(a.+ ):-ue-v—-w—-vcote
1+a2\®  in 6 2 2

The auxiliary equations required are

daT

Tg 46 + Ty dp

da

ag 46 + atp do
The characteristics of this system are given by
. 2 2
gin 0 dp = —98 (V¥ V_+‘_’__l)
1 V2 C2

c2
Also, the streamlines are given by

d0 + a sin 6 dp = O

(16)

(17)

(18)

(19) -

(20)

From equations (16) through (18), the condition to be fulfilled by da

and dT on the characteristics is also obtained. This is, for the

characteristics defined by equation (19),




10 NACA TN 2651

)
1ta T—2-1 5
-de c u(T—-- )-vcotei
1.“’—2 c?
2
2
_2"1 ’wz
-—c——uA+CQSB + £~ cot 6 (21)
w B*e c2

The + signs in equations (19) and (21) coincide. Thus, referring to
figure 2, to continue a solution from a curve abc (not a characteristic
curve) to a point d, one comstructs the straight line segments ad and cd
by equation (19) and bd by equation (20). Then equation (21) enables
one to find « and T (end hence v and W by equation (15)) at
point d. Then u is obtained by

du=u9d9+ucpdcp

or, along the streamline bd, using equations (15) and (20),

du = (T sin 0 {1 + az)d.cp (22)

Finally Bg 1is needed. Since bd is a streamline, Bgq = Bp. Then, on
the characteristic ad,

ap = By - By

il

Be(de + a sin 6 do)

I

5(Boa + Bga)(d0 + o sin © dp) (23)
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which gives Be at d and this completes the determination of the con-~
ditions at point d. Recall that, of course, SB is constant along bd.

In general, the construction of the solution in the hyperbolic
region by the method of characteristics is complicated by the fact that
the boundary from which the solution is begun will be an initially
unknown shock surface. Construction of the shock solution may be carried
out in a manner similar to that given, for example, in reference 23, for
the case of plane or axially symmetric flow.

Referring to figure 3, suppose that the shock is to start at
point D. Its initial angle may be found by assuming that near D there
1s a plane two-dimensional shock. This may be easily calculated from
the usual obligue-shock theory (see, e.g., reference 24), where one
must first calculate the components of the free-stream flow normal and
parellel to the ray passing from the vertex of the cone through the
point D. Then the component of the Mach number normal to this ray is
used as the initial Mach number in the oblique-shock relations with the
angle of flow deflection also measured perpendicular to that ray. One
can then determine conditions immediately behind the shock. So long as
the shock remains plane, the Cartesian velocjty components, in the
region influenced only by the shock, willl remain constant.

Thus, referring to figure 4(a) suppose that the boundary surface to
which the shock is attached is tangent to OAH at its leading edge OA.
The shock will be tangent to the plane QAJ at OA. One then seeks to
determine the equation of the shock tangent to plane QAJ and the
Carteslian velocity components immediately behind the shock, in terms of
the free-stream Mach number M, the position of the leading edge g,V,
and the slope of the body-tangent plene ¢. Thus,

MV1l - cos2p cosev T

My1
> (24)

=
I

/EKC = tan?l gsin p + tan v tan €
cos 1 cos Vv(tan v -~ sin p tan €)

where My; 1s the component of the free-stream Mach number normal to

the leading edge and 1 1is the angle of flow deflection through the
shock. Using My and 7 one may obtain from oblique-shock tables

(e.g., reference 24) the shock angle 6, (angle JKC in fig. L4(a)) and
the Mach number My, behind the shock, normal to it. Then the velocity

component normal to the shock, behind it, is
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7y -1 2 T
2 2 MNE
sye =\ (X - 8?)———
1+ —My
2
2
where & (25)
Sm = cos H coB ¥
T
2 ~—

is the tangential component.

Then the Cartesian velocity components vy, v,, and v, behind

had z

the shock are

Vy cos KL cos v
vy_ = ST gin v +
Vo, cos y-8in p
1l - coseu coszv
SN2 cos 7

-cos y(sin ¢ tan n + cos {4 sin v)

J 2 - 2
1l - co cos
s ¥ v sin v tan 1 - sin i cos | cosev (26)

The equation of the plane portion of the shock is, in spherical
coordinates,

2
tan ew(l - cos%: cos v)

cos cos Vv
tan 0 = H

(tan B 8in p cos v + ten v)cos P - (tan O sin v - tan u)sin Q
cos K

(27)
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Now consider again figure 3. Suppose that the shock is known up
to a point A and the conditions at a point B, lying on a characteristic
from A, are also known. One then seeks the conditions at point C on
the shock. The position of C may be found from the intersection of the
characteristic from B, found from equation (19), and the line -segment AC,
having the slope +tan 8. Then, the conditions at C may be determined

from the differential expression (21) along BC and the conditions at the
shock. Let subscripts 1 and 2 refer to conditions upstream (to the

left of the shock in fig. 3) and downstream of the shock, respectively.

Then, since the components of velocity tangent to the shock are contin-

uous across it, there hold

(28)

<v2 gin 8 - W, cos8 6) = (vi gin & - wi‘cos 5)

and, for the jump in normal velocity across the shock (recall that u,
v, and w are the ratios of physical velocity -to maximum velocity),
there holds

(vl cos & + Wy sin 8)(v2 gos 5] T LA sin 8) =

; : i 1l u12 - (vl sin 8 - w, cos 8)%] (29)

But, because uy, vy, and w; are simply the‘coﬁppnents of the free
stream which lies parallel to the 6 = O axis, one obtains,

ul =u cos 6
v, = -u sin 6 - (30)
wi =0 .
where -
7"'1M2
T = 2
1+ 2Ly
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Then, the solution of equations (28) to (30) yields

u, = u cos @ (31)
ap = -va/wa
Q + sin?&
= -cot & (32)
Q —- 00825
2 = 2 2
T —-v2 + Wé
_2 2
-3 smze(Q + sin ) (332)
cos® -
where
y 1 1+ r -1 M? sin26 00525
= — (33p)
7+ 1 '7;]']&12 sin°0

hence, one may consider that, from equations (32) and (33),
To = X(ags O 1) (3)
or expanding in a Taylor's series along the characteristic BC (rig. 3),

Tc =Tp + GE)B(GC - ag) + o(2a?) (35)

a
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Then, using equations (21) and (35), there is obtained

dr [T ,[
daf+ —/— - 1Vl + a +—_—] =
\/___

d
< c l+a/B
S .
1xal - 2\[- 5
' c2 T
- de . -uf2 - =— -V cot 6
1l - V2/;2 c
”
2
< (uA + czsﬁsa+2’-2cot e) . (36)
w c2

Hence one finds oz from equation (36), then T, from equation (35),

and hence v and w. The quantity B; follows from equation (32),
u, follows from eguation (31), and the remaining quantities are

obtained as in the general case already discussed. This procedure will
enable one to calculate the shape of the shock and the physical quan-
tities on it. However, the reader is cautioned to note that in most
cases the shock will be in nearly the same direction as the character-

istics immediately downstream of it. Hence the point B should be taken
close to point A.

In some cases, such as the low-pressure side of a lifting wing,
there will be no shock, but rather an expansion of the flow. In such
a case the solution is -simplified because the flow is irrotational and
the velocities vary continuously. The solution may be started by a
Prandtl-Meyer expansion in a manner analogous to that used where there
was a shock. As in the shock case, the normal component of the Mach
number MNl and the angle of flow deflection 1 are found by equa-

tions (24). Then, referring to figure 4(b), angle CKJ; is the Mach
angle corresponding to My,. Hence,

< CKJy = sin~H(1/My,) (37)




16 . , NACA TN 2651

This defines the plane of the start of the expansion fan (OKAJl). Then,
using Myy as the initial Mach number and 7 as the deflection angle,

one can immediately obtain from tables of Prandtl-Meyer flows (see
reference 24) the normal Mach number My, behind the flow. Then Sp

and Sy, are found by equations (25) and the Cartesian velocity com-

ponents, by equation (26). Then angle 7 + CKJ, is the Mach angle
corresponding to Mys. Hence

£ CKIp = sin™H(1/Myo) - 0 (38)

The equations of the planes of the start (OKAJi) and end (OKAJQ) of the

fan of the expansion are then found by using equation (27), where,
instead of 6, one uses angle CKJ,.(equation 37) and angle CKJ, (equa-

tion (38)) for the beginning and end, respectively. To find the veloc-
ities inside the fan, simply take a series of deflection angles between
O and n and calculate, as already described, the corresponding vy,
V.

¥ 79 ané'the angle, corresponding to angle CKJ,, of the plane
where those velocities apply.

and v

Since the end.of the expansion fan is not a characteristic of the
flow, the solution may be continued from it in the manner already
described. e

The remaining kind of. point which can arise is at the surface of
the body in the flow (in fig. 3, point E). Here there is specified the
equation of the body, 6p = 6g(®). Hence

I
o = (dcp )E (39)

and therefore, in equation (21), da is known and dT may be solved
for immediately. This completes the solution of a purely hyperbolic
region.

If the flow in a given domain is such that the system (equa-
tions (11) and (12)) of differential equations defining the flow 1is
elliptic, the solution must{ be found in some other manner. Also, if a
hyperbolic region is bounded by an unknown elliptic region, that hyper-
bolic region will interact with the elliptic one so that both must be

Ve
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solved concurrently. In either case, the relaxation procedure (see, €uf.,
references 19 and 20) appears to be the best for this portion. In most
conical-flow problems, the shock will be fairly weak, at least as com-
pared with a normal shock, because it must remain attached to the body
in order to have conical flow. Furthermore, even if it is of appre-
ciable strength, that strength will probably very fairly slowly about
the body. Hence, except at singular points (see reference 18), it
appears that the entropy gradients will be small and, to a first approxi-
mation, may be ignored. In such a case, one need solve only equa-

tion (12) with the right-hand side set equal to O. The effect of rota-
tion may then be found by an iteration process. For this, u, Ups &5

Sg, and By in equation (11) are as found for the irrotational case

and A 1is then determined. These values determine then the right-hand
side of equation (12) and the left-hand side may then be relaxed again.
The process may be repeated if necessary.

To apply the relaxation procedure to the system, one must first
write the differential equation in finite difference form. Referring to
figure 5, at point E there holds approximately,

~
_UYp - Yy
(uQ)E - Beae
(i) __ -V
sin /5 2Ap sin 6y
(u ) =uB-2uE+uH
06/g (19)2 > (40)
( U ) _ Uy - ¥y + Uy - ug
sin 6/g - 4ne Ap sin O
(ucpcp) _Yp - g +ug
2 2
sin“0/p (AP sin 6f) _

Q
However, in solving the (irrotational) problem, it appears easiest for

computing purposes to relax u by using Ugg and uq)cp in finite dif-

ference form and to correct periodically the other terms. Thus one gets,
for point E
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o) 2
Uy 1 - _ Yo

5
(up - 29g + vg)\———/ + (up - 2ug + up) (c sin 6)

=-K (h41)
L8 (& sin a)2 E

2 2 2
K = u( - 2 - "o ) + ug cot 9(} + o ) - 2u9u¢u¢9
c

e
c2 c? sin®0 2 ginZg c2 ginZ0

Also it is seen that, since the difference equation (41) has variable
coefficients, there is no particular advantage in meking AF and AP
everywhere the same., In particular, the range of variation of ¢ will
usually be much greater than that of 6, go that 1t appears reasonable
to take Ap greater than Af9.

The boundary conditions in this region may appear in several forms.
At a solid boundary, the condition i1s

dOB L

where eB = GB(Q) is the equation of the boundary. On a line where the

region abuts a known hyperbolic reglon, u will be specified. On a
line of symmetry, the normal derivative of u will be O.

The final kind of boundary condition will appear at a shock. The
essentlal difficulty here is that the location of the shock is initially
unknown. However, the following method may be used to specify this con-
dition. First, the position of the shock is estimated to as great accu-
racy as possible. This may be done in a number of ways. If the body is
nearly the shape of another for which the shock is known (as a circular
cone), the shock will be close to that known shock. If part of the
shock is already known from calculations in an independent hyperbolic
region, the remainder may probably be estimated fairly accurately.
Finally, the method given by Lighthill in reference 21 may be used to
approximate the position. In any case, the more accurately the shock
position is known at the start, the easier will be the solution.

Suppose now that the shock hes been estimated in some manner. One
then uses as the shock boundary condition the (known) values of the
radial velocity u corresponding to that shock. Then the flow is
calculated roughly and the variation of ug, or approximately, v, is



NACA TN 2651 19

obtained. At the shock this velocity must satisfy the known jump condi-
tion in the normal velocity. From equations (31) to (33), this is

v, = - sin 6(Q + sin®s) (43)

2

Then, assuming & remains constant, the variation of vV, Wwith 6 may

be found (fig. 6). If one then plots also the veriation of v fram

the calculated velocity field, extrapolating if necessary, & new shock
position may be found. This relaxation of the shock position can
readily be carried out concurrently with the relaxation of the field.

Once this irrotational solution is found, the entropy distribution
at the shock is given by

2 2 2
_ _ 29M“ 8in“6 cos<d - (y - 1) _
y(y - 1)s 1ose[: v ]

(r + l)M2 8in%0 coss

7 log )

e 2 2 2
2+ (y - 1)M s8in 8 cos d

This completes the description of the method of solution of the
general conical-flow problem, It should be noted that, although the
relaxation procedure 1s applicable without having any initial idea of
the solution, it will be difficult to solve unless a reasonable esti-
mate of the field can be made at the start.

EXAMPLE

Consider a flat-plate, zero-thickness, triangular wing (fig. 7) at
a -12° angle of attack, having as the included angle of the leading
edges, 90°, and moving in an otherwise uniform stream at a Mach number

of 3. Since the leading edges are supersonic (the Mach angle is

sin=11/3 = 200), the top and bottom surfaces are independent. The

lower surface is an expansion surface and has no shock and hence the
flow on this side is irrotational. The solution on this side will be
discussed first (fig. 8).
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From equation (24), My; = 2.1667 and 1 = 16.731°. Then, from
tables of Prandtl-Meyer expansions, Myo = 2.8902. Thus

v, = 0.8388
| vy = =0.0732 (45)
v, = 0.1783

These are the Cartesian velocity ccmponents in region CDF. Also, the
equation of the start of the expansion BF is

-cot 8 = 2.6614 cos(p - 11.740) + 0.9577 sin(p - 11.740) (46)
and the end of the expansion fan CF is given by
-cot 6 = 22,5608 cos(p - 11.740) + 0.9577 sin(p - 11.7T740) (¥7)

The values for the Cartesian velocity components, given by equa~-
tions (45), are congtant in CDF. This is not the entire hyperbolic
region. However, by using the defining equation of the characteristics
(equation (19)) and values of the velocity components calculated in the
expansion fen, there was calculated that characteristic starting at B,
which is the point of tangency of the Mach cone from the wing vertex
and the start of the expansion. This ig BCD. Although there is a hyper-
bolic region to the left of BCD, it is dependent on the unknown elliptic
one. Hence the remaining domain ABCDEA must be solved by relaxation.

The boundary conditions are:

ABCD: u specified A
2
DE: u, = - Yp (sin 9) -1 L (48)
0 gin 6 \\sin p
EA: =0
uw ~/

To get an initial estimate of the solution, the linearized solution
of the problem was found. The perturbation component of the radial
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velocity ®u is given (in the elliptic region, that is, inside the
Mach cone from the wing vertex) by

ua cos 6
-— X

5u= T i

1-ten9sing -1 1 - (2 - 1)tan 0 sin g

-1
+
Y2 - 2 VM2 - 2 - VM2 - 1\(1 - tan 6 sin 9)2 + tan® cos2p(2 - M2)

2
<+l+tanesinq)sin_1 1+(M-l)tanesinq>
2

M2 - 2 VM2 = 1Y(1 + tan 6 sin 9)2 + tan2e cosPp(2 - M2)

1J2 tan 6 cos (pV]i (M2 - 1)tan®

+ tan 8 cos @ | tan™ 7
-1+ tan?0 1 + (M2 - 1)cosZ)
"
Then, the linearized solution is
u=1ucos 6+ Bu (49)

The initial guesses for the values.of u were the values obtained
from equation (49), modified in an arbitrary manner to fit the known
boundary values and the actual shape of the elliptic (and dependent
hyperbolic) region.

The solution was then completed by a relaxation process. Figure 8
shows the configuration together with the various regions encountered.
In figure 9, the surface pressure coefficient, given by

c. = 4P _ 2 1 - (u2 + v2 + wg)‘7(7—l

-1 (50)

is shown. For comparison purposes, the linearized pressure coefficient
is also given. Because the ratio of angle of attack to Mach angle is
high (0.62), the linearized theory can hardly be expected to yield
accurate results. This completes the solution on the expansion side of
the wing. ‘

e e e — e~ — = = ~— - - -
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On the compression side, the solution in region FGH (fig. 8) was
found first. As before, My, = 2.1667 and n = 16.731°. Then, from

the shock tables My, = 1.524k. Thus

vy, = 0.7076
vy = 0.0607 > (51)
v, = 0.150k J

The equation of the first part of the shock (FG) is then
-cot 6 = -1.4318 cos(p - 11.740) + 0.9577 sin(p - 11.740) (52)

As in the expansion case, this analytic solution does not cover the
entire hyperbolic region, but only that part limited by the character-
istic GH, starting from the point immediately downstream of the shock

where v2 + w2 = c2. As before, there is a small hyperbolic region
vhich is dependent on the elliptic one. The remaining domain GHDEKG
must be solved by relaxation. First, however, the shock position is
needed. The Mach angle is 19.5° and the shock angle corresponding to a
Plane wedge at a 12° angle of attack and a Mach number of 3 is 29.5°.
Hence the shock angle at the middle was chosen arbitrarily as 27.5° and
a smooth curve fitted in. Then, for the domain, these boundary condi-
tions hold

KGH: u specified a

' 2

HDE: u9 = - l@ sin 9) - 1 (53)
gin 6 sin p

FK: Up = 0 ‘

J

An initial estimate of the solution was made in the same menner as
in the previous case. Then, after the relaxation had been carried out
go that the residuals were fairly small, the shock position was recalcu-
lated in the mammer already described. This procedure was continued and
the solution obtained. No particular difficulties were encountered and,
in this case at least, the shock position did not have to be changed a
second time. ‘
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The entropy distribution along the shock was found to vary falrly
slowly and hence no attempt was made to correct the solution for this
variation.

The pressure distribution on this surface is shown in figure 9 and
compared with the result predicted by linearized theory.

In table I, the velocity field for the wing is presented. In the
regions where the flow is plane, the Carteslian velocity components are
given and, in the remaining regions, the radial component is given.

DISCUSSION

The method described In this report for the solution of conical
flows appears to be applicable to any such flow. With one possible
exception, the relaxation procedure should converge fairly readily. That
exception might arise in the case where a large hyperbolic region where
the flow properties varied raplidly is embedded in an elliptic region.

An example of such a case is the tip region of a 1ifting wing with sub-
sonic leading edges. In such a case there will be a very large upwash
velocity at the tip (the linearized theory predicts infinite upwash).

It also should be remembered that, 88 was found in the example
discussed previously, the solution obtained for an independent hyper-
bolic region will not be valid up to the parabolic line, but, rather, a
portion of the hyperbolic domain will depend on the elliptic one.

Regarding the calculated example, several things are noteworthy.
First the pressure on the shock and expansion sides are both consider-
ably higher than the linearized theory indicates. Thus the 1ift of the
wing is larger than that predicted by the linear theory. However, one
would ekpect that there will actually be separation on the expansion
side of the alrfoil and that therefore some of this added 1ift will not
be realized. A second observation is that the extent of the constant-
pressure reglon has been drastically changed.

CONCLUSIONS

A numerical method has been described for the calculation of the
supersonic flow about cones for the case where the shock, 1if any, is
attached to the cone so that the flow is conical. The procedure employs
a combination of the method of characteristics and the relaxation method.
Also, an lterative process for obtaining the position of the shock is
described. The method can be applied to any conical flow. The main
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problem in practical application is the convergence of the relaxation
solution. No difficulty on this score should be anticipated unless
there is a large embedded hyperbolic region where the flow velocities
are expected to vary rapldly.

Brown University
Providence, R. I., August 23, 1951
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TABLE I

VELOCITY FIELD IN DISTURBED REGIONT

(a) In region FGH where vy = 0.7076, vy = 0.0607,
and v, = 0.150L.
A Pl o -10 | =20 | -30 | -0 | =50 | -60 -70
15 |0.T7438|0.7433(0. T418]0.7396|~mmmmm [ ~mmmmem -]~

18.5| .7393| .7388| .73TL| .7344|0.7303}0.7250|~mmmmm | o
22 | .T318| .7313| .7296| . . .
25.5] .7211] .7208) .7189| .7158| .T109| .T043]|0.6958|-—mem-

29 .6975] .6905| .6813|-—meum
32,5 |mmmmme [mmmee | | | e .6752] .665k4|0.6545
(v) In region CDF where vy, = 0.8388, vy = -0.0732,
and v, = 0.1783.
o[ o -30 | -60 | -90 | -120 | -150 | -180

0 |0.8278|0.82780.8278|0.82780.8278{0.8278}0.8278
5 .8365| .8346| .8299( .8242| .8189| .8155| .81hk
10 | .8k05| .8352| .8252| .8120| .8029( .T985| .T973
15 [mmmeee]c———— Biha| .7912| L7809 .TTT8| .TTTE
20 .T536] .T554| . T554

(c) On characteristic BC.Z

ol Vx | Vy Vg

-90{0.8378|-0.0682]0.1607

-105| .8304| -.0490| .1000
-120| .8178| -.0255| .okT70
-135| .8059| -.0055| .0100
-148] .8018] o )

17311 velocities are radial unless otherwise specified.

2Values given are constant on rays extending through
wing tip.
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Figure 1.~ Coordinate systems and velocity components used in general
analysis of supersonic conical flow.

Characteristics

b a AR

Streamline

Figure 2.- Construction of solution for conditions at point in hyper-—
bolic region by method of characteristics.

Figure 3.- Construction of solution for plane two-dimensional shock in
hyperbolic region by method of characteristics.
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<l

M,

(a) For shock attached to boundary surface tangent to body surface.
Plane JACH is orthogonal to 0C; plane JKCH is orthogonal to OK.

\ ////// ‘

1

(b) For expansion of flow (no shock). Plane HAJ1JoC is orthogonal to
0C; plane HKJ7JoC is orthogonal to OK.

Figure L.~ Construction of solutions by method of characteristics for
shock attached to body-tangent boundary surface and for expansion
of flow in hyperbolic region,
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Figure 5.~ Construction of solution for elliptic region by relaxation
process.

Equation (43)

’ '-—New shock position
, 014 shock position

|
i,

0

Figure 6.- Variation of v with 6 vwhen & is assumed constant.
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Free-stream
Mach cone

Figure 7.- Flat—plate, zero-thickness, triangular wing with supersonic

leading edges in uniform stream at Mach number of 3.

S Shock
Parsgbolic line
G
Characteristic
E D Wing i : F
P
c Expansion fan
an 6 ] 1

Pargbolic

Figure 8.- Construction of solution for flow about triangular wing with

supersonic leading edges.
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Cp

Pressure coefficient,

NACA TN 2651

l [ |

A T T
/ Nonlinear, shock side

Linear, shock side .

L

(@)

Nonlinear, expansion side

Linear, expansion side
1

1

1 i

Tip

Spanwise distance from center linpe

Figure 9.- Surface pressure coefficient.
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